• In a previous lecture, we saw a 3-approximate local search for metric facility location. This note shows how a very similar local search gives a 5-approximation for the k-median problem. We have tried to keep this note self-contained, although we may still refer to the previous lecture from time to time.

In the k-median problem we are given a set F of facilities, a set C of clients, and a metric $d(\cdot, \cdot)$ in $F \cup C$. The objective is to open at most k facilities, that is $X \subseteq F$ with |X| = k, and connect clients via assignment $\sigma : C \to X$ to nearest open facility, to minimize

$$cost(X) = \sum_{j \in C} d(\sigma(j), j)$$
(1)

• Local Search for *k*-median. The algorithm is the obvious one; we open an arbitrary collection of *k* facilities, and try to find swaps which decreases cost, stopping when no such swap is possible.

 procedure kMED-LOCAL SEARCH(F, C, d):
 X be an arbitrary subset of k facilities.
 ▷ Throughout cost(X) is defined using (1) where f_i = 0
 while true do:
 (Swap): If there exists i ∈ X and i' ∈ F\X such that cost(X-i+i') < cost(X); X ← X - i + i'.
 Otherwise, break

• Analysis. We prove the following theorem.

Theorem 1. *k*MED-LOCAL SEARCH is a 5-approximation algorithm.

- We use notation similar to that in the case of UFL. Let X be the set of facilities opened at the end of the above algorithm. Let σ(j) denote the facility in X client j is connected to. Let Γ(i) denote the set of clients connected to facility i ∈ X. Let X* denote the set of facilities opened in the optimal solution. Let σ* and Γ* be defined similarly. Let d_j := d(σ(j), j) and d^{*}_j := d(σ*(j), j) be the connection costs for client j in the algorithm and optimum solution, respectively. Thus, C_{alg} = Σ_{j∈C} d_j and C* = Σ_{i∈C} d^{*}_j.
- As in the case of UFL, we need the concepts of nearest and its "inverse".

Fix an $i \in X$. When we close i, we need to figure out how to reassign $\Gamma(i)$. It would be great if $j \in \Gamma(i)$ can be assigned to $i^* := \sigma^*(j)$, but that facility may not be opened. So one tries the next best thing : open the nearest facility to this i^* . This motivates the following key definition.

¹Lecture notes by Deeparnab Chakrabarty. Last modified : 14th January, 2022

These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

Given $i^* \in X^*$, let nearest (i^*) denote the facility i in X with minimum $d(i, i^*)$.

For any facility $i \in X$, define

$$X_i^* := \{ i^* \in X^* : \texttt{nearest}(i^*) = i \}.$$
(2)

that is, the facilities in X^* for which *i* is the closest facility. In some sense, it is the "inverse" of the nearest map, and indeed would exactly be that if nearest was a bijection. Instead, X_i^* maps to a subset of facilities in X^* . Crucially note that by definition, $X_i^* \cap X_{i'}^*$ for any two facilities in X. See Figure 1 for an illustration

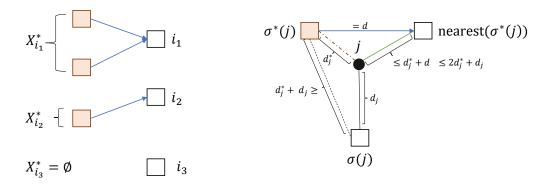


Figure 1: Salmon squares denote facilities in X^* while empty squares denote facilities in X. The blue arrows denote the nearest map from X^* to X. The sets X_i^* for each $i \in X$ is denoted; note that $X_{i_1}^*$ has two facilities, $X_{i_2}^*$ has 1, while $X_{i_3}^*$ is empty. The right figure illustrates Claim 1.

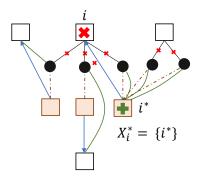
Here is a useful fact which follows easily from triangle inequality and definition of nearest (see Figure 1 for an illustration).

Claim 1. For any $j \in C$, $d(\texttt{nearest}(\sigma^*(j)), j) \leq d_j + 2d_j^*$.

Proof. Let j be assigned to i in σ and i* in σ^* . Then, triangle inequality implies $d(\texttt{nearest}(i^*), j) \leq d(i^*, j) + d(\texttt{nearest}(i^*), i^*) \leq d_j^* + d(i, i^*)$, where the last inequality is by definition of $\texttt{nearest}(i^*)$. Triangle inequality again implies $d(i^*, i) \leq d(i, j) + d(i^*, j)$.

A Wishful thinking. Suppose for the time being that nearest was indeed a bijection. That is, for every i ∈ X, X_i^{*} is a singleton. Then consider swapping i and the unique facility i^{*} ∈ X_i^{*}. Consider the following reassignment : all the clients j ∈ Γ^{*}(i^{*}) are re-assigned to i^{*}, and all the clients j ∈ Γ(i) are reassigned to nearest(σ^{*}(j)). Note that this is possible since either σ^{*}(j) ≠ i^{*} in which case its nearest(σ^{*}(j)) is in X \ i, or σ^{*}(j) = i^{*} and it has been already re-assigned to i^{*} when we reassigned Γ^{*}(i^{*}). See Figure 2 for an illustration. By Claim Claim 1, the increase in cost due to reassignment of j ∈ Γ(i) \ Γ^{*}(i^{*}) is at most 2d_j^{*}. Thus, the difference due to this reassignment is

$$\sum_{j\in\Gamma^*(i^*)} \left(d_j^* - d_j\right) + \sum_{j\in\Gamma(i)\backslash\Gamma^*(i^*)} 2d_j^* \geq 0 \tag{3}$$



swap i and i^*

Figure 2: Salmon squares denote facilities in X^* while empty squares denote facilities in X. Dotted brown lines denote the assignment σ^* . The blue arrows denote the nearest map from X^* to X. Green lines denote reassignments. In the figure, $X_i^* = \{i^*\}$ and we swap i and i^* . All $j \in \Gamma^*(i^*)$ are reassigned to i^* . For all $j \in \Gamma(i) \setminus \Gamma^*(i^*)$, we must have nearest $(\sigma^*(j)) \in X \setminus i$, and they are reassigned to that facility.

If we now add this over all (i, i^*) pairs with $i \in X$ and $X_i^* = \{i^*\}$, then we would get

$$\sum_{i^* \in X^*} \sum_{j \in \Gamma^*(i^*)} \left(d_j^* - d_j \right) + \sum_{i \in X} \sum_{j \in \Gamma(i) \setminus \Gamma^*(i^*)} 2d_j^* \geq 0$$

In the first summation in the LHS above, every client $j \in C$ participates exactly once. In the second summation, every client $j \in C$ participates at most once. Therefore,

$$\sum_{j \in C} \left(d_j^* - d_j \right) + \sum_{j \in C} 2d_j^* \ge 0 \quad \Rightarrow \quad \operatorname{3opt} := 3\sum_{j \in C} d_j^* \ge \sum_{j \in C} d_j =: \operatorname{alg}$$

and we would have a 3-approximation.

• However, the nearest map may not be a bijection. And therefore, we need to work a bit more (at the cost of the approximation factor).

Let $X_0 := \{i \in X : |X_i^*| = 0\}$, $X_1 := \{i \in X : |X_i^*| = 1\}$, and $X_2 := \{i \in X : |X_i^*| \ge 2\}$. In Figure 1 left side, we have $X_0 = \{i_3\}$, $X_1 = \{i_2\}$, and $X_2 = \{i_1\}$. The above bullet point shows if $X_1 = X$, then we would get a 3-approximation. It is instructive, however, to try and see where the above argument fails. That is, if we write (3) for (i, i^*) for all $i \in X_1$ and then try to sum up, where do we fall short? One sees that we don't account the d_j 's for all clients, rather only for the clients in the $\Gamma^*(i^*)$'s seen. In particular, if a facility $i' \in X^*$ is *not* in X_i^* for any $i \in X_1$, then we have not been able to argue about the clients in $\Gamma^*(i')$. The next idea defines "swap pairs" such that every facility of X^* is involved in such a pair.

- Swap Pairs. We describe a set $R \subseteq X^* \times X$ with |R| = k which will be the potential swaps we consider. We need them to have the following properties.
 - a. For all $i^* \in X^*$, there exists *exactly one* $i \in X_0 \cup X_1$ such that $(i^*, i) \in R$.
 - b. For every $i \in X_1$ there is *exactly one* $i^* \in X^*$ with $(i^*, i) \in R$.

c. For every $i \in X_0$ there is at most two $i^* \in X^*$ with $(i^*, i) \in R$.

In other words, we can think of R as a bipartite graph from X^* to $X_0 \cup X_1$, then the degree deg(i) of every vertex i in X^* and X_1 is 1 and the degree deg(i) of every vertex in X_0 is ≤ 2 .

Indeed, this is easy. For all $i \in X_1$, let i^* be the unique element in X_i^* . We add (i^*, i) to R. Now the remaining $k - |X_1|$ facilities of X^* need to be mapped to X_0 . Since $k - |X_1| = |X_0| + |X_2| \le 2|X_0|$, we can always find one such that every $i \in X_0$ is mapped with at most 2 facilities in X^* . An arbitrary one will do. See Figure 3 for an illustration.

The full proof. Consider now the swaps defined by R: for (i^{*}, i) ∈ R, add i^{*} in and delete i. For each j ∈ Γ^{*}(i^{*}), we re-assign it to i^{*}. By design, for every j ∈ Γ(i) \ Γ^{*}(i^{*}), we have nearest(σ^{*}(j)) ∈ X − i + i^{*}. Note that, by Claim 1, these j's would pay at most d_j + 2d_j^{*}. Since swaps don't decrease cost, we get that for all (i^{*}, i) ∈ R, (3) holds. That is,

$$\sum_{j\in\Gamma^*(i^*)} \left(d_j^* - d_j\right) + \sum_{j\in\Gamma(i)\backslash\Gamma^*(i^*)} 2d_j^* \geq 0$$
 local optimality

Summing over all pairs in R, we get

$$\sum_{(i^*,i)\in R} \sum_{j\in\Gamma^*(i^*)} (d_j^* - d_j) + \sum_{(i^*,i)\in R} \sum_{j\in\Gamma(i)\setminus\Gamma^*(i^*)} 2d_j^* \ge 0$$

The first summation is precisely $\sum_{i^* \in X^*} \deg(i^*) \cdot \left(\sum_{j \in \Gamma^*(i^*)} (d_j^* - d_j)\right) = C^* - C_{\mathsf{alg}}$ since $\deg(i^*) = 1$ for all $i^* \in X^*$ and each $j \in C$ appears in exactly one $\Gamma^*(i^*)$. The second summation is precisely $2\sum_{i \in X_0 \cup X_1} \deg(i) \cdot \left(\sum_{j \in \Gamma(i)} d_j^*\right)$ which is at most $4C^*$ since $\deg(i) \le 2$ and each $j \in C$ appears in at most one $\Gamma(i) \setminus \Gamma^*(i^*)$. Therefore, the LHS is at most $5C^* - C_{\mathsf{alg}}$, and thus we get that $5C^* \ge C_{\mathsf{alg}}$. This completes the proof of Theorem 1.

Notes

The local search algorithm described above is from the paper [1] by Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit. The analysis here is inspired by the simpler analysis in [4] by Gupta and Tangwongsan. For k-median, one can look at p-swaps where p-facilities are swapped out; we have investigated the p = 1 case. It is not too hard to generalize the above analysis to prove that it gives a $\left(3 + \frac{2}{p}\right)$ -approximation. The runtime becomes $n^{O(p)}$. The analysis is tight and an example can be found in [1]. This factor, was the best known factor for k-median for close to a decade, till the paper [5] by Li and Svensson gave a $(1 + \sqrt{3}) \approx 2.732$ -approximation using different methods. The best known approximation factor of 2.675 is in the paper [2]. Very recently, a *non-oblivious* local search method was announced in the paper [3] and was analyzed to have a factor ≤ 2.836 . This is not known to be tight.

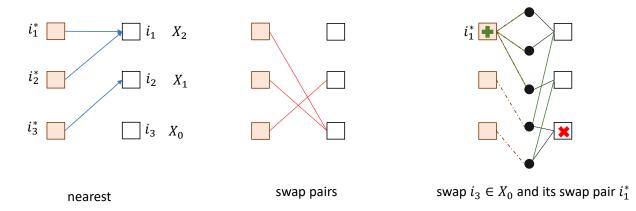


Figure 3: The first figure shows the nearest relation. The middle red lines show swap pairs. The third shows a swap of a facility in X_0 with its swap pair. Salmon squares denote facilities in X^* while empty squares denote facilities in X. Dotted brown lines denote the assignment σ^* . The blue arrows denote the nearest map from X^* to X. Green lines denote reassignments.

References

- V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. *SIAM Journal on Computing (SICOMP)*, 33(3):544–562, 2004.
- [2] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation for k-median, and positive correlation in budgeted optimization. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 737–756, 2014.
- [3] V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic. An improved local search algorithm for k-median. *arXiv preprint arXiv:2111.04589*, 2021. To appear in SODA 2022.
- [4] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. arXiv preprint arXiv:0809.2554, 2008.
- [5] S. Li and O. Svensson. Approximating *k*-median via pseudo-approximation. *SIAM Journal on Computing (SICOMP)*, 45(2):530–547, 2016.