
Local Search Algorithms for k-Median*1

• In a previous lecture, we saw a 3-approximate local search for metric facility location. This note
shows how a very similar local search gives a 5-approximation for the k-median problem. We have
tried to keep this note self-contained, although we may still refer to the previous lecture from time to
time.

In the k-median problem we are given a set F of facilities, a set C of clients, and a metric d(·, ·) in
F ∪ C. The objective is to open at most k facilities, that is X ⊆ F with |X| = k, and connect clients
via assignment σ : C → X to nearest open facility, to minimize

cost(X) =
∑
j∈C

d(σ(j), j) (1)

• Local Search for k-median. The algorithm is the obvious one; we open an arbitrary collection of k
facilities, and try to find swaps which decreases cost, stopping when no such swap is possible.

1: procedure kMED-LOCAL SEARCH(F,C, d):
2: X be an arbitrary subset of k facilities.
3: . Throughout cost(X) is defined using (1) where fi = 0
4: while true do:
5: (Swap): If there exists i ∈ X and i′ ∈ F \X such that cost(X−i+i′) < cost(X);
X ← X − i+ i′.

6: Otherwise, break

• Analysis. We prove the following theorem.

Theorem 1. kMED-LOCAL SEARCH is a 5-approximation algorithm.

• We use notation similar to that in the case of UFL. LetX be the set of facilities opened at the end of the
above algorithm. Let σ(j) denote the facility in X client j is connected to. Let Γ(i) denote the set of
clients connected to facility i ∈ X . Let X∗ denote the set of facilities opened in the optimal solution.
Let σ∗ and Γ∗ be defined similarly. Let dj := d(σ(j), j) and d∗j := d(σ∗(j), j) be the connection
costs for client j in the algorithm and optimum solution, respectively. Thus, Calg =

∑
j∈C dj and

C∗ =
∑

j∈C d
∗
j .

• As in the case of UFL, we need the concepts of nearest and its “inverse”.

Fix an i ∈ X . When we close i, we need to figure out how to reassign Γ(i). It would be great if
j ∈ Γ(i) can be assigned to i∗ := σ∗(j), but that facility may not be opened. So one tries the next
best thing : open the nearest facility to this i∗. This motivates the following key definition.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 14th January, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

Given i∗ ∈ X∗, let nearest(i∗) denote the facility i in X with minimum d(i, i∗).

For any facility i ∈ X , define

X∗i := {i∗ ∈ X∗ : nearest(i∗) = i}. (2)

that is, the facilities in X∗ for which i is the closest facility. In some sense, it is the “inverse” of the
nearest map, and indeed would exactly be that if nearest was a bijection. Instead, X∗i maps to
a subset of facilities in X∗. Crucially note that by definition, X∗i ∩ X∗i′ for any two facilities in X .
See Figure 1 for an illustration

𝑗

𝜎(𝑗)

𝜎∗(𝑗) nearest(𝜎∗ 𝑗)

𝑑𝑗
∗

𝑑𝑗
𝑑𝑗
∗ + 𝑑𝑗 ≥

= 𝑑

≤ 𝑑𝑗
∗ + 𝑑 ≤ 2𝑑𝑗

∗ + 𝑑𝑗

𝑖1𝑋𝑖1
∗

𝑋𝑖2
∗

𝑖2

𝑖3𝑋𝑖3
∗ = ∅

Figure 1: Salmon squares denote facilities in X∗ while empty squares denote facilities in X . The blue
arrows denote the nearest map from X∗ to X . The sets X∗i for each i ∈ X is denoted; note that X∗i1 has
two facilities, X∗i2 has 1, while X∗i3 is empty. The right figure illustrates Claim 1.

Here is a useful fact which follows easily from triangle inequality and definition of nearest (see Fig-
ure 1 for an illustration).

Claim 1. For any j ∈ C, d(nearest(σ∗(j)), j) ≤ dj + 2d∗j .

Proof. Let j be assigned to i in σ and i∗ in σ∗. Then, triangle inequality implies d(nearest(i∗), j) ≤
d(i∗, j)+d(nearest(i∗), i∗) ≤ d∗j+d(i, i∗), where the last inequality is by definition of nearest(i∗).
Triangle inequality again implies d(i∗, i) ≤ d(i, j) + d(i∗, j).

• A Wishful thinking. Suppose for the time being that nearest was indeed a bijection. That is, for
every i ∈ X , X∗i is a singleton. Then consider swapping i and the unique facility i∗ ∈ X∗i . Consider
the following reassignment : all the clients j ∈ Γ∗(i∗) are re-assigned to i∗, and all the clients j ∈ Γ(i)
are reassigned to nearest(σ∗(j)). Note that this is possible since either σ∗(j) 6= i∗ in which case
its nearest(σ∗(j)) is in X \ i, or σ∗(j) = i∗ and it has been already re-assigned to i∗ when we
reassigned Γ∗(i∗). See Figure 2 for an illustration. By Claim Claim 1, the increase in cost due to
reassignment of j ∈ Γ(i) \ Γ∗(i∗) is at most 2d∗j . Thus, the difference due to this reassignment is∑

j∈Γ∗(i∗)

(
d∗j − dj

)
+

∑
j∈Γ(i)\Γ∗(i∗)

2d∗j ≥︸︷︷︸
local optimality

0 (3)

2

𝑖

𝑋𝑖
∗ = {𝑖∗}

swap 𝑖 and 𝑖∗

𝑖∗

Figure 2: Salmon squares denote facilities in X∗ while empty squares denote facilities in X . Dotted brown
lines denote the assignment σ∗. The blue arrows denote the nearest map from X∗ to X . Green lines
denote reassignments. In the figure, X∗i = {i∗} and we swap i and i∗. All j ∈ Γ∗(i∗) are reassigned to i∗.
For all j ∈ Γ(i) \ Γ∗(i∗), we must have nearest(σ∗(j)) ∈ X \ i, and they are reassigned to that facility.

If we now add this over all (i, i∗) pairs with i ∈ X and X∗i = {i∗}, then we would get∑
i∗∈X∗

∑
j∈Γ∗(i∗)

(
d∗j − dj

)
+
∑
i∈X

∑
j∈Γ(i)\Γ∗(i∗)

2d∗j ≥︸︷︷︸
local optimality

0

In the first summation in the LHS above, every client j ∈ C participates exactly once. In the second
summation, every client j ∈ C participates at most once. Therefore,∑

j∈C

(
d∗j − dj

)
+
∑
j∈C

2d∗j ≥ 0 ⇒ 3opt := 3
∑
j∈C

d∗j ≥
∑
j∈C

dj =: alg

and we would have a 3-approximation.

• However, the nearest map may not be a bijection. And therefore, we need to work a bit more (at the
cost of the approximation factor).

Let X0 := {i ∈ X : |X∗i | = 0}, X1 := {i ∈ X : |X∗i | = 1}, and X2 := {i ∈ X : |X∗i | ≥ 2}.
In Figure 1 left side, we have X0 = {i3}, X1 = {i2}, and X2 = {i1}. The above bullet point shows
if X1 = X , then we would get a 3-approximation. It is instructive, however, to try and see where the
above argument fails. That is, if we write (3) for (i, i∗) for all i ∈ X1 and then try to sum up, where
do we fall short? One sees that we don’t account the dj’s for all clients, rather only for the clients
in the Γ∗(i∗)’s seen. In particular, if a facility i′ ∈ X∗ is not in X∗i for any i ∈ X1, then we have
not been able to argue about the clients in Γ∗(i′). The next idea defines “swap pairs” such that every
facility of X∗ is involved in such a pair.

• Swap Pairs. We describe a set R ⊆ X∗ × X with |R| = k which will be the potential swaps we
consider. We need them to have the following properties.

a. For all i∗ ∈ X∗, there exists exactly one i ∈ X0 ∪X1 such that (i∗, i) ∈ R.
b. For every i ∈ X1 there is exactly one i∗ ∈ X∗ with (i∗, i) ∈ R.

3

c. For every i ∈ X0 there is at most two i∗ ∈ X∗ with (i∗, i) ∈ R.

In other words, we can think of R as a bipartite graph from X∗ to X0 ∪X1, then the degree deg(i) of
every vertex i in X∗ and X1 is 1 and the degree deg(i) of every vertex in X0 is ≤ 2.

Indeed, this is easy. For all i ∈ X1, let i∗ be the unique element in X∗i . We add (i∗, i) to R. Now the
remaining k−|X1| facilities ofX∗ need to be mapped toX0. Since k−|X1| = |X0|+ |X2| ≤ 2|X0|,
we can always find one such that every i ∈ X0 is mapped with at most 2 facilities in X∗. An arbitrary
one will do. See Figure 3 for an illustration.

• The full proof. Consider now the swaps defined by R: for (i∗, i) ∈ R, add i∗ in and delete i. For each
j ∈ Γ∗(i∗), we re-assign it to i∗. By design, for every j ∈ Γ(i) \ Γ∗(i∗), we have nearest(σ∗(j)) ∈
X − i+ i∗. Note that, by Claim 1, these j’s would pay at most dj + 2d∗j . Since swaps don’t decrease
cost, we get that for all (i∗, i) ∈ R, (3) holds. That is,∑

j∈Γ∗(i∗)

(
d∗j − dj

)
+

∑
j∈Γ(i)\Γ∗(i∗)

2d∗j ≥︸︷︷︸
local optimality

0

Summing over all pairs in R, we get∑
(i∗,i)∈R

∑
j∈Γ∗(i∗)

(d∗j − dj) +
∑

(i∗,i)∈R

∑
j∈Γ(i)\Γ∗(i∗)

2d∗j ≥ 0

The first summation is precisely
∑

i∗∈X∗ deg(i∗)·
(∑

j∈Γ∗(i∗)(d
∗
j − dj)

)
= C∗−Calg since deg(i∗) =

1 for all i∗ ∈ X∗ and each j ∈ C appears in exactly one Γ∗(i∗). The second summation is precisely
2
∑

i∈X0∪X1
deg(i) ·

(∑
j∈Γ(i) d

∗
j

)
which is at most 4C∗ since deg(i) ≤ 2 and each j ∈ C appears in

at most one Γ(i)\Γ∗(i∗). Therefore, the LHS is at most 5C∗−Calg, and thus we get that 5C∗ ≥ Calg.
This completes the proof of Theorem 1.

Notes

The local search algorithm described above is from the paper [1] by Arya, Garg, Khandekar, Meyerson, Mu-
nagala, and Pandit. The analysis here is inspired by the simpler analysis in [4] by Gupta and Tangwongsan.
For k-median, one can look at p-swaps where p-facilities are swapped out; we have investigated the p = 1

case. It is not too hard to generalize the above analysis to prove that it gives a
(

3 + 2
p

)
-approximation.

The runtime becomes nO(p). The analysis is tight and an example can be found in [1]. This factor, was
the best known factor for k-median for close to a decade, till the paper [5] by Li and Svensson gave a
(1 +

√
3) ≈ 2.732-approximation using different methods. The best known approximation factor of 2.675

is in the paper [2]. Very recently, a non-oblivious local search method was announced in the paper [3] and
was analyzed to have a factor ≤ 2.836. This is not known to be tight.

4

𝑋0

𝑋1

𝑋2

𝑖3

𝑖1
∗

𝑖2

𝑖1

𝑖3
∗

𝑖2
∗

𝑖1
∗

nearest swap pairs swap 𝑖3 ∈ 𝑋0 and its swap pair 𝑖1
∗

Figure 3: The first figure shows the nearest relation. The middle red lines show swap pairs. The third
shows a swap of a facility in X0 with its swap pair. Salmon squares denote facilities in X∗ while empty
squares denote facilities in X . Dotted brown lines denote the assignment σ∗. The blue arrows denote the
nearest map from X∗ to X . Green lines denote reassignments.

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SIAM Journal on Computing (SICOMP), 33(3):544–562,
2004.

[2] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation for k-median,
and positive correlation in budgeted optimization. In Proc., ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 737–756, 2014.

[3] V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic. An improved local search algorithm for
k-median. arXiv preprint arXiv:2111.04589, 2021. To appear in SODA 2022.

[4] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. arXiv
preprint arXiv:0809.2554, 2008.

[5] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. SIAM Journal on Com-
puting (SICOMP), 45(2):530–547, 2016.

5

