Local Search Algorithms for k-Median*!

* In a previous lecture, we saw a 3-approximate local search for metric facility location. This note
shows how a very similar local search gives a 5-approximation for the k-median problem. We have
tried to keep this note self-contained, although we may still refer to the previous lecture from time to
time.

In the k-median problem we are given a set I’ of facilities, a set C' of clients, and a metric d(-, -) in
F U C. The objective is to open at most k facilities, that is X C F' with | X'| = k, and connect clients
via assignment o : C' — X to nearest open facility, to minimize

cost(X) = d(a(j),]) (1)

jec

* Local Search for k-median. The algorithm is the obvious one; we open an arbitrary collection of k
facilities, and try to find swaps which decreases cost, stopping when no such swap is possible.

1: procedure K MED-LOCAL SEARCH(F, C, d):

2 X be an arbitrary subset of k facilities.

3: > Throughout cost(X) is defined using (1) where f; =0

4 while true do:

5 (Swap): If there exists i € X and ¢’ € F'\ X such that cost(X —i+1') < cost(X);
X+ X—i+7.

6: Otherwise, break

* Analysis. We prove the following theorem.

Theorem 1. K MED-LOCAL SEARCH is a 5-approximation algorithm.

* We use notation similar to that in the case of UFL. Let X be the set of facilities opened at the end of the
above algorithm. Let o(j) denote the facility in X client j is connected to. Let I'(7) denote the set of
clients connected to facility « € X. Let X™* denote the set of facilities opened in the optimal solution.
Let 0* and I'* be defined similarly. Let d; := d(o(j),) and d} := d(c"(j), j) be the connection
costs for client j in the algorithm and optimum solution, respectively. Thus, Cyg = > ..~ d; and

* As in the case of UFL, we need the concepts of nearest and its “inverse”.

jeC

Fix an i € X. When we close i, we need to figure out how to reassign I'(z). It would be great if
j € I'(7) can be assigned to i* := (), but that facility may not be opened. So one tries the next
best thing : open the nearest facility to this ¢*. This motivates the following key definition.

'Lecture notes by Deeparnab Chakrabarty. Last modified : 14th January, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

Given i* € X*, let nearest(:*) denote the facility ¢ in X with minimum d(, i*).
For any facility ¢ € X, define
X; ={i" € X" : nearest(i*) = i}. 2

that is, the facilities in X™* for which ¢ is the closest facility. In some sense, it is the “inverse” of the
nearest map, and indeed would exactly be that if nearest was a bijection. Instead, X maps to
a subset of facilities in X™*. Crucially note that by definition, X7 N X for any two facilities in X.

See Figure 1 for an illustration
=d /)[I nearest(c*(j))

N , .
; 1 —-
Xll 1 :\‘ -_\] \////

W <di+d <2dj+d;
, d+ d;=\Y
I:l/D Ly / ! d;
* “,

Xi*3 =@ |:| is a(j)

Figure 1: Salmon squares denote facilities in X* while empty squares denote facilities in X. The blue
arrows denote the nearest map from X* to X. The sets X for each i € X is denoted; note that X has
two facilities, X}, has 1, while X} is empty. The right figure illustrates Claim 1.

Here is a useful fact which follows easily from triangle inequality and definition of nearest (see Fig-
ure 1 for an illustration).

Claim 1. For any j € C, d(nearest(c*(j)),j) < d; + 2d}.

Proof. Let j be assigned to i in o and ¢* in o*. Then, triangle inequality implies d(nearest(i*), j) <
d(i*, j)+d(nearest(i*),i*) < dj+d(i,i*), where the last inequality is by definition of nearest(:*).
Triangle inequality again implies d(:*,4) < d(i,j) + d(i*, 7).

O

» A Wishful thinking. Suppose for the time being that nearest was indeed a bijection. That is, for
every ¢ € X, X is a singleton. Then consider swapping 7 and the unique facility :* € X . Consider
the following reassignment : all the clients j € I"*(¢*) are re-assigned to ¢*, and all the clients j € I'(7)
are reassigned to nearest(c*(j)). Note that this is possible since either c*(j) # ¢* in which case
its nearest(c*(j)) is in X \ ¢, or 0*(j) = ¢* and it has been already re-assigned to i* when we
reassigned I'*(¢*). See Figure 2 for an illustration. By Claim Claim 1, the increase in cost due to
reassignment of j € I'(i) \ I'*(#*) is at most 2d}. Thus, the difference due to this reassignment is

Yo (G -dy)+ D 2 = 0 3)

JET*(i%) JET(H\I™*(1*) local optimality

swapi and i*

Figure 2: Salmon squares denote facilities in X* while empty squares denote facilities in X. Dotted brown
lines denote the assignment o*. The blue arrows denote the nearest map from X* to X. Green lines
denote reassignments. In the figure, X; = {i*} and we swap i and i*. All j € I'*(i*) are reassigned to i*.
Forall j € T'(i) \ T (i*), we must have nearest(c*(j)) € X \ i, and they are reassigned to that facility.

If we now add this over all (¢,4*) pairs with ¢ € X and X = {i*}, then we would get

IIEDIRCELIED DD DI A

EeX™ JEI™(i%) 1€ X JeD()\I™* (%) local optimality

In the first summation in the LHS above, every client 5 € C participates exactly once. In the second
summation, every client j € C participates at most once. Therefore,

S (di—dj)+> 2d5>0 = Bopt:=3) di>» dj=alg

jec jec jec jec
and we would have a 3-approximation.

* However, the nearest map may not be a bijection. And therefore, we need to work a bit more (at the
cost of the approximation factor).
Let Xo :={i € X : | X}| =0}, Xy :={ie X:|X/| =1}, and Xy := {i € X : | X| > 2}
In Figure 1 left side, we have Xy = {is}, X1 = {i2}, and X5 = {i;}. The above bullet point shows
if X1 = X, then we would get a 3-approximation. It is instructive, however, to try and see where the
above argument fails. That is, if we write (3) for (¢,¢*) for all i € X and then try to sum up, where
do we fall short? One sees that we don’t account the d;’s for all clients, rather only for the clients
in the I'*(i*)’s seen. In particular, if a facility ¢’ € X* is not in X for any i € X;, then we have
not been able to argue about the clients in I'*(i’). The next idea defines “swap pairs” such that every
facility of X* is involved in such a pair.

* Swap Pairs. We describe a set R C X™* x X with |R| = k which will be the potential swaps we
consider. We need them to have the following properties.

a. Forall ¢* € X, there exists exactly one i € XU X; such that (¢*,7) € R.
b. Forevery i € X there is exactly one i* € X* with (i*,i) € R.

c. Forevery i € X there is at most two i* € X* with (i*,i) € R.

In other words, we can think of R as a bipartite graph from X* to Xy U X7, then the degree deg(i) of
every vertex i in X ™ and X is 1 and the degree deg(7) of every vertex in X is < 2.

Indeed, this is easy. For all i € X7, let i* be the unique element in X . We add (:*,7) to R. Now the
remaining k — | X1 | facilities of X* need to be mapped to Xy. Since k — | X1| = | Xo|+ | X2| < 2| X0,
we can always find one such that every ¢ € X is mapped with at most 2 facilities in X *. An arbitrary
one will do. See Figure 3 for an illustration.

The full proof. Consider now the swaps defined by R: for (i*,7) € R, add ¢* in and delete i. For each
j € I'"(7*), we re-assign it to ¢*. By design, for every j € I'(¢) \ I'*(¢*), we have nearest(c*(j)) €
X —i+1". Note that, by Claim 1, these j’s would pay at most d; + 2d;. Since swaps don’t decrease
cost, we get that for all (¢*,7) € R, (3) holds. That is,

Soo(dy—d)+ D 2d; > 0

JET*(i*) FJET(\I™*(4*) local optimality
Summing over all pairs in R, we get

S Y weae Y Y a0

(i*,4)eR jel*(i*) (i*,8)eR jeT'(¢)\I'* (4*)

The first summation is precisely D .. y- deg(i*)- (Ejep*(i*) (d5 — dj)> = C*—C,g since deg(i*) =
1 for all ¢* € X* and each j € C appears in exactly one I'*(:*). The second summation is precisely
2 iexoux, deg(i)- (Zjer(i) d;) which is at most 4C™* since deg(i) < 2 and each j € C appears in

at most one I'(7) \ I'*(*). Therefore, the LHS is at most 5C* — C,q, and thus we get that 5C* > Cjjq.
This completes the proof of Theorem 1.

Notes

The local search algorithm described above is from the paper [1] by Arya, Garg, Khandekar, Meyerson, Mu-
nagala, and Pandit. The analysis here is inspired by the simpler analysis in [4] by Gupta and Tangwongsan.
For k-median, one can look at p-swaps where p-facilities are swapped out; we have investigated the p = 1

case. It is not too hard to generalize the above analysis to prove that it gives a (3 + %)—approximation.

The runtime becomes n°®). The analysis is tight and an example can be found in [1]. This factor, was
the best known factor for k-median for close to a decade, till the paper [5] by Li and Svensson gave a
(1 + v/3) ~ 2.732-approximation using different methods. The best known approximation factor of 2.675
is in the paper [2]. Very recently, a non-oblivious local search method was announced in the paper [3] and
was analyzed to have a factor < 2.836. This is not known to be tight.

nearest swap pairs swap i3 € X, and its swap pair i]
Figure 3: The first figure shows the nearest relation. The middle red lines show swap pairs. The third
shows a swap of a facility in X with its swap pair. Salmon squares denote facilities in X* while empty
squares denote facilities in X. Dotted brown lines denote the assignment o*. The blue arrows denote the
nearest map from X* to X. Green lines denote reassignments.

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SIAM Journal on Computing (SICOMP), 33(3):544-562,
2004.

[2] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation for k-median,
and positive correlation in budgeted optimization. In Proc., ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 737-756, 2014.

[3] V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic. An improved local search algorithm for
k-median. arXiv preprint arXiv:2111.04589, 2021. To appear in SODA 2022.

[4] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. arXiv
preprint arXiv:0809.2554, 2008.

[5] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. SIAM Journal on Com-
puting (SICOMP), 45(2):530-547, 2016.

