Local Search Algorithms for k-Median* ${ }^{1}$

- In a previous lecture, we saw a 3 -approximate local search for metric facility location. This note shows how a very similar local search gives a 5 -approximation for the k-median problem. We have tried to keep this note self-contained, although we may still refer to the previous lecture from time to time.
In the k-median problem we are given a set F of facilities, a set C of clients, and a metric $d(\cdot, \cdot)$ in $F \cup C$. The objective is to open at most k facilities, that is $X \subseteq F$ with $|X|=k$, and connect clients via assignment $\sigma: C \rightarrow X$ to nearest open facility, to minimize

$$
\begin{equation*}
\operatorname{cost}(X)=\sum_{j \in C} d(\sigma(j), j) \tag{1}
\end{equation*}
$$

- Local Search for k-median. The algorithm is the obvious one; we open an arbitrary collection of k facilities, and try to find swaps which decreases cost, stopping when no such swap is possible.

```
procedure \(k\) Med-Local Search \((F, C, d)\) :
    \(X\) be an arbitrary subset of \(k\) facilities.
    \(\triangleright\) Throughout \(\operatorname{cost}(X)\) is defined using (1) where \(f_{i}=0\)
    while true do:
        (Swap): If there exists \(i \in X\) and \(i^{\prime} \in F \backslash X\) such that \(\operatorname{cost}\left(X-i+i^{\prime}\right)<\operatorname{cost}(X)\);
\(X \leftarrow X-i+i^{\prime}\).
        Otherwise, break
```

- Analysis. We prove the following theorem.

Theorem 1. k Med-Local Search is a 5 -approximation algorithm.

- We use notation similar to that in the case of UFL. Let X be the set of facilities opened at the end of the above algorithm. Let $\sigma(j)$ denote the facility in X client j is connected to. Let $\Gamma(i)$ denote the set of clients connected to facility $i \in X$. Let X^{*} denote the set of facilities opened in the optimal solution. Let σ^{*} and Γ^{*} be defined similarly. Let $d_{j}:=d(\sigma(j), j)$ and $d_{j}^{*}:=d\left(\sigma^{*}(j), j\right)$ be the connection costs for client j in the algorithm and optimum solution, respectively. Thus, $C_{\text {alg }}=\sum_{j \in C} d_{j}$ and $C^{*}=\sum_{j \in C} d_{j}^{*}$.
- As in the case of UFL, we need the concepts of nearest and its "inverse".

Fix an $i \in X$. When we close i, we need to figure out how to reassign $\Gamma(i)$. It would be great if $j \in \Gamma(i)$ can be assigned to $i^{*}:=\sigma^{*}(j)$, but that facility may not be opened. So one tries the next best thing : open the nearest facility to this i^{*}. This motivates the following key definition.

[^0]$$
\text { Given } i^{*} \in X^{*}, \text { let nearest }\left(i^{*}\right) \text { denote the facility } i \text { in } X \text { with minimum } d\left(i, i^{*}\right)
$$

For any facility $i \in X$, define

$$
\begin{equation*}
X_{i}^{*}:=\left\{i^{*} \in X^{*}: \text { nearest }\left(i^{*}\right)=i\right\} \tag{2}
\end{equation*}
$$

that is, the facilities in X^{*} for which i is the closest facility. In some sense, it is the "inverse" of the nearest map, and indeed would exactly be that if nearest was a bijection. Instead, X_{i}^{*} maps to a subset of facilities in X^{*}. Crucially note that by definition, $X_{i}^{*} \cap X_{i^{\prime}}^{*}$ for any two facilities in X. See Figure 1 for an illustration

Figure 1: Salmon squares denote facilities in X^{*} while empty squares denote facilities in X. The blue arrows denote the nearest map from X^{*} to X. The sets X_{i}^{*} for each $i \in X$ is denoted; note that $X_{i_{1}}^{*}$ has two facilities, $X_{i_{2}}^{*}$ has 1, while $X_{i_{3}}^{*}$ is empty. The right figure illustrates Claim 1.

Here is a useful fact which follows easily from triangle inequality and definition of nearest (see Figure 1 for an illustration).

Claim 1. For any $j \in C, d\left(\right.$ nearest $\left.\left(\sigma^{*}(j)\right), j\right) \leq d_{j}+2 d_{j}^{*}$.

Proof. Let j be assigned to i in σ and i^{*} in σ^{*}. Then, triangle inequality implies d (nearest $\left.\left(i^{*}\right), j\right) \leq$ $d\left(i^{*}, j\right)+d\left(\right.$ nearest $\left.\left(i^{*}\right), i^{*}\right) \leq d_{j}^{*}+d\left(i, i^{*}\right)$, where the last inequality is by definition of nearest $\left(i^{*}\right)$. Triangle inequality again implies $d\left(i^{*}, i\right) \leq d(i, j)+d\left(i^{*}, j\right)$.

- A Wishful thinking. Suppose for the time being that nearest was indeed a bijection. That is, for every $i \in X, X_{i}^{*}$ is a singleton. Then consider swapping i and the unique facility $i^{*} \in X_{i}^{*}$. Consider the following reassignment : all the clients $j \in \Gamma^{*}\left(i^{*}\right)$ are re-assigned to i^{*}, and all the clients $j \in \Gamma(i)$ are reassigned to nearest $\left(\sigma^{*}(j)\right)$. Note that this is possible since either $\sigma^{*}(j) \neq i^{*}$ in which case its nearest $\left(\sigma^{*}(j)\right)$ is in $X \backslash i$, or $\sigma^{*}(j)=i^{*}$ and it has been already re-assigned to i^{*} when we reassigned $\Gamma^{*}\left(i^{*}\right)$. See Figure 2 for an illustration. By Claim Claim 1, the increase in cost due to reassignment of $j \in \Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)$ is at most $2 d_{j}^{*}$. Thus, the difference due to this reassignment is

$$
\begin{equation*}
\sum_{j \in \Gamma^{*}\left(i^{*}\right)}\left(d_{j}^{*}-d_{j}\right)+\sum_{j \in \Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)} 2 d_{j}^{*} \underbrace{\geq}_{\text {local optimality }} 0 \tag{3}
\end{equation*}
$$

$\operatorname{swap} i$ and i^{*}
Figure 2: Salmon squares denote facilities in X^{*} while empty squares denote facilities in X. Dotted brown lines denote the assignment σ^{*}. The blue arrows denote the nearest map from X^{*} to X. Green lines denote reassignments. In the figure, $X_{i}^{*}=\left\{i^{*}\right\}$ and we swap i and i^{*}. All $j \in \Gamma^{*}\left(i^{*}\right)$ are reassigned to i^{*}. For all $j \in \Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)$, we must have nearest $\left(\sigma^{*}(j)\right) \in X \backslash i$, and they are reassigned to that facility.

If we now add this over all $\left(i, i^{*}\right)$ pairs with $i \in X$ and $X_{i}^{*}=\left\{i^{*}\right\}$, then we would get

$$
\sum_{i^{*} \in X^{*}} \sum_{j \in \Gamma^{*}\left(i^{*}\right)}\left(d_{j}^{*}-d_{j}\right)+\sum_{i \in X} \sum_{j \in \Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)} 2 d_{j}^{*} \underbrace{\geq}_{\text {local optimality }} 0
$$

In the first summation in the LHS above, every client $j \in C$ participates exactly once. In the second summation, every client $j \in C$ participates at most once. Therefore,

$$
\sum_{j \in C}\left(d_{j}^{*}-d_{j}\right)+\sum_{j \in C} 2 d_{j}^{*} \geq 0 \Rightarrow 3 \text { opt }:=3 \sum_{j \in C} d_{j}^{*} \geq \sum_{j \in C} d_{j}=: \text { alg }
$$

and we would have a 3 -approximation.

- However, the nearest map may not be a bijection. And therefore, we need to work a bit more (at the cost of the approximation factor).
Let $X_{0}:=\left\{i \in X:\left|X_{i}^{*}\right|=0\right\}, X_{1}:=\left\{i \in X:\left|X_{i}^{*}\right|=1\right\}$, and $X_{2}:=\left\{i \in X:\left|X_{i}^{*}\right| \geq 2\right\}$. In Figure 1 left side, we have $X_{0}=\left\{i_{3}\right\}, X_{1}=\left\{i_{2}\right\}$, and $X_{2}=\left\{i_{1}\right\}$. The above bullet point shows if $X_{1}=X$, then we would get a 3 -approximation. It is instructive, however, to try and see where the above argument fails. That is, if we write (3) for $\left(i, i^{*}\right)$ for all $i \in X_{1}$ and then try to sum up, where do we fall short? One sees that we don't account the d_{j} 's for all clients, rather only for the clients in the $\Gamma^{*}\left(i^{*}\right)$'s seen. In particular, if a facility $i^{\prime} \in X^{*}$ is not in X_{i}^{*} for any $i \in X_{1}$, then we have not been able to argue about the clients in $\Gamma^{*}\left(i^{\prime}\right)$. The next idea defines "swap pairs" such that every facility of X^{*} is involved in such a pair.
- Swap Pairs. We describe a set $R \subseteq X^{*} \times X$ with $|R|=k$ which will be the potential swaps we consider. We need them to have the following properties.
a. For all $i^{*} \in X^{*}$, there exists exactly one $i \in X_{0} \cup X_{1}$ such that $\left(i^{*}, i\right) \in R$.
b. For every $i \in X_{1}$ there is exactly one $i^{*} \in X^{*}$ with $\left(i^{*}, i\right) \in R$.

$$
\text { c. For every } i \in X_{0} \text { there is at most two } i^{*} \in X^{*} \text { with }\left(i^{*}, i\right) \in R \text {. }
$$

In other words, we can think of R as a bipartite graph from X^{*} to $X_{0} \cup X_{1}$, then the degree $\operatorname{deg}(i)$ of every vertex i in X^{*} and X_{1} is 1 and the degree $\operatorname{deg}(i)$ of every vertex in X_{0} is ≤ 2.
Indeed, this is easy. For all $i \in X_{1}$, let i^{*} be the unique element in X_{i}^{*}. We add $\left(i^{*}, i\right)$ to R. Now the remaining $k-\left|X_{1}\right|$ facilities of X^{*} need to be mapped to X_{0}. Since $k-\left|X_{1}\right|=\left|X_{0}\right|+\left|X_{2}\right| \leq 2\left|X_{0}\right|$, we can always find one such that every $i \in X_{0}$ is mapped with at most 2 facilities in X^{*}. An arbitrary one will do. See Figure 3 for an illustration.

- The full proof. Consider now the swaps defined by R : for $\left(i^{*}, i\right) \in R$, add i^{*} in and delete i. For each $j \in \Gamma^{*}\left(i^{*}\right)$, we re-assign it to i^{*}. By design, for every $j \in \Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)$, we have nearest $\left(\sigma^{*}(j)\right) \in$ $X-i+i^{*}$. Note that, by Claim 1, these j 's would pay at most $d_{j}+2 d_{j}^{*}$. Since swaps don't decrease cost, we get that for all $\left(i^{*}, i\right) \in R$, (3) holds. That is,

$$
\sum_{j \in \Gamma^{*}\left(i^{*}\right)}\left(d_{j}^{*}-d_{j}\right)+\sum_{j \in \Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)} 2 d_{j}^{*} \underbrace{\geq}_{\text {local optimality }} 0
$$

Summing over all pairs in R, we get

$$
\sum_{\left(i^{*}, i\right) \in R} \sum_{j \in \Gamma^{*}\left(i^{*}\right)}\left(d_{j}^{*}-d_{j}\right)+\sum_{\left(i^{*}, i\right) \in R} \sum_{j \in \Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)} 2 d_{j}^{*} \geq 0
$$

The first summation is precisely $\sum_{i^{*} \in X^{*}} \operatorname{deg}\left(i^{*}\right) \cdot\left(\sum_{j \in \Gamma^{*}\left(i^{*}\right)}\left(d_{j}^{*}-d_{j}\right)\right)=C^{*}-C_{\text {alg }} \operatorname{since} \operatorname{deg}\left(i^{*}\right)=$ 1 for all $i^{*} \in X^{*}$ and each $j \in C$ appears in exactly one $\Gamma^{*}\left(i^{*}\right)$. The second summation is precisely $2 \sum_{i \in X_{0} \cup X_{1}} \operatorname{deg}(i) \cdot\left(\sum_{j \in \Gamma(i)} d_{j}^{*}\right)$ which is at most $4 C^{*}$ since $\operatorname{deg}(i) \leq 2$ and each $j \in C$ appears in at most one $\Gamma(i) \backslash \Gamma^{*}\left(i^{*}\right)$. Therefore, the LHS is at most $5 C^{*}-C_{\text {alg }}$, and thus we get that $5 C^{*} \geq C_{\text {alg }}$. This completes the proof of Theorem 1.

Notes

The local search algorithm described above is from the paper [1] by Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit. The analysis here is inspired by the simpler analysis in [4] by Gupta and Tangwongsan. For k-median, one can look at p-swaps where p-facilities are swapped out; we have investigated the $p=1$ case. It is not too hard to generalize the above analysis to prove that it gives a $\left(3+\frac{2}{p}\right)$-approximation. The runtime becomes $n^{O(p)}$. The analysis is tight and an example can be found in [1]. This factor, was the best known factor for k-median for close to a decade, till the paper [5] by Li and Svensson gave a $(1+\sqrt{3}) \approx 2.732$-approximation using different methods. The best known approximation factor of 2.675 is in the paper [2]. Very recently, a non-oblivious local search method was announced in the paper [3] and was analyzed to have a factor ≤ 2.836. This is not known to be tight.

swap $i_{3} \in X_{0}$ and its swap pair i_{1}^{*}

Figure 3: The first figure shows the nearest relation. The middle red lines show swap pairs. The third shows a swap of a facility in X_{0} with its swap pair. Salmon squares denote facilities in X^{*} while empty squares denote facilities in X. Dotted brown lines denote the assignment σ^{*}. The blue arrows denote the nearest map from X^{*} to X. Green lines denote reassignments.

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on Computing (SICOMP), 33(3):544-562, 2004.
[2] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation for k-median, and positive correlation in budgeted optimization. In Proc., ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 737-756, 2014.
[3] V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic. An improved local search algorithm for k-median. arXiv preprint arXiv:2111.04589, 2021. To appear in SODA 2022.
[4] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility location. arXiv preprint arXiv:0809.2554, 2008.
[5] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. SIAM Journal on Computing (SICOMP), 45(2):530-547, 2016.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified : 14th January, 2022
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

